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The spectral multigrid method for periodic elliptic problems is examined. Several 
modifications are introduced, including a midpoint pseudospectral discretization which 
eliminates the need for filtering the highest Fourier mode and new relaxation schemes for 
isotropic and anisotropic problems. Numerical results are presented demonstrating substantial 
increases in efficiency and accuracy over previous methods. 0 1985 Academic Press. Inc. 

1. INTRODUCTION 

For elliptic problems with smooth solutions, spectral discretizations can give 
highly accurate approximations with relatively few degrees of freedom (grid points 
or basis functions) [ 11. However, solving the resulting discrete equations efficiently 
is complicated. In general, the matrices involved are full, and indirect (iterative) 
methods must be designed so that fast transforms may be used effectively. Several 
such methods have been proposed [2,3]. 

One of the most promising techniques for solving spectral equations is the mul- 
tigrid procedure introduced by Zang et al. [4, 51. Like conventional multigrid 
methods for finite difference discretizations [6, 71, this procedure involves cycling 
between different levels of discretization (grids) to reduce the error on all scales 
efficiently. The key elements involved are the relaxation scheme used to smooth the 
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error on each grid, the interpolation processes used for transfers between grids, and 
the cycling algorithm which decides when the grid transfers take place. These 
elements have all been discussed in detail in [4, 51 for both periodic and Dirichlet 
problems. 

The purpose of this paper is to introduce for the periodic case some refinements 
which can substantially improve the overall efficiency of the spectral multigrid 
method. In Section 2 we show that by evaluating the fluxes at the midpoints 
between the usual collocation points a “midpoint” pseudospectral discretization is 
obtained which eliminates the need for filtering the highest modes, resulting in 
improved accuracy and efficiency. For the isotropic case considered in [4], a 
weighted residual relaxation scheme with a greatly improved smoothing rate is 
introduced in Section 3.1. It is shown that by properly scaling the relaxation 
parameters, the smoothing rates obtained for constant coefficient problems also 
hold even when the coefhcients are not constant. Some comparisons of choices for 
coarse grid operators and residual transfers are also made. In Section 3.2 we 
introduce another relaxation scheme, based on defect corrections, which is efficient 
even for highly anisotropic problems. Our results are summarized in Section 4. 

2. FOURIER PSEUDOSPECTRAL DISCRETIZATIONS 

Spectral methods approximate the solution of a problem by a truncated series 
expansion in terms of some known basis functions, with the expansion coefficients 
determined by a projection such as Galerkin, tau, or collocation. Here only the 
collocation projection will be considered, as it is the most readily applicable to 
equations with variable coefficients; spectral methods based on collocation are often 
referred to as pseudospectral methods. For periodic problems, Fourier basis 
functions are appropriate. In this section we describe and contrast two slightly dif- 
ferent Fourier pseudospectral approximations. 

For illustration purposes, consider the one-dimensional problem 

g a(& =f(x) [ 1 (06x6:) (2.1) 

with periodic boundary conditions, where a and f are regarded as known. The 
essence of the Fourier pseudospectral method is to approximate the solution u by a 
truncated Fourier series U in x which satisfies (2.1) at a finite set of discrete points 
in [0, L] known as collocation points. The approximate solution is represented by 
its values at the collocation points and its truncated series expansion is used to 
compute its derivatives exactly. When a and f are infinitely differentiable and 
periodic, U converges to u asymptotically faster than any algebraic power of the 
number of terms in the expansion, a phenomenon known as exponential con- 
vergence. 
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Choosing the collocation points as xi = jh (j= O,..., N- 1) with h = L/N and 
setting Uj = V(x,), the truncated Fourier series for U may be represented by the dis- 
crete Fourier transform pair 

p= -N/2+1 

Op = $ yf l uje - 2nijpjN. 
J=O 

(2.2a) 

(2.2b) 

Some subtleties involved in this representation are discussed in the Appendix. The 
expression for the derivative V(x) at the collocation points corresponding to (2.2a) 
is 

(2.3) 

The highest mode ON,, has been filtered from (2.3); two alternative explanations for 
this may be found in [4] and the Appendix. Using (2.2) and (2.3), one can con- 
struct a pseudospectral approximation to (2.1) as follows. The unknown values Uj 
are related to the values Uj’ of the derivative at the collocation points by (2.3), 
where the spectral coefficients oP are obtained using (2.2b). The derivative values 
Uj are then multiplied pointwise by the values aj = a(xj), and the result is differen- 
tiated in the same way and set equal to f(x) at the collocation points. This results 
in a full linear system for determining the values U,. Since the highest mode is 
filtered in the process of taking the derivatives, this approach will be referred to as 
the “filtered discretization”; it is the discretization used in 141. 

A second, and perhaps more natural, approach avoids the filtering of the highest 
mode by evaluating the flux a(x) U’(x) at the midpoints xj+ 1,2 = (j+ l/2) h 
between the collocation points. For this approach, the derivative relation (2.3) is 
replaced by 

ul + l/2 = p= -z2+ 1 (2) ip~PeniPlNe2WPlN, (2.4) 

where the phase factor e IriplN comes about in the shift from xi to xi+ ii2. In the 
resulting pseudospectral discretization of (2.1) the flux a(x) U’(x) is evaluated at 
the midpoints xi + 1,2, and the result is differentiated and transferred back to the 
collocation points xi by a formula analogous to (2.4) except with the phase factor 
eniPiN replaced by e -rriJ’JN. With this approach, referred to as the “midpoint dis- 
cretization,” the information in the highest mode is retained. 

Consider now the two-dimensional problem 

224 = (au,), + (cu~)~ =f (2.5) 
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on the domain [0, L,] x [0, L,,] with periodic boundary conditions. This is the 
problem to be considered in the remainder of this paper. We introduce the grid 

~h={(xj,yk)=(jh,,khy),O~j<N,,O~k<Ny} (2.6) 

of collocation points with h = (h,, hy) = (LX/N,, L,/N,) and N, and NY even. The 
pseudospectral discretizations described above are easily extended to (2.5); indeed, 
since the spectral coefficients are used only in computing the derivatives, all 
operations are essentially one dimensional, with the solution being in spectral space 
in at most one direction (x or y) at any step. Note that in the filtered discretization, 
both the highest modes in x and the highest modes in y must be removed. Either of 
the approximations described above leads to a discrete equation of the form 

cYhUh = Fh, (2.7) 

where Yh is a linear operator and Uh and Fh are grid functions consisting of the 
values of the approximate solution U(x, y) and right-hand side f(x, y) on the grid 
Oh. 

To compare the two discretizations consider the isotropic test case introduced in 
[4], in which the coefficients and analytical solution for (2.5) with L, = L, = 2x are 
given by 

a(x, y) = c(x, y) = 1 + .secoS(x+y), 

u(x, y)=sin 7rcosx+~ sin 7rcos y+T 
( 4) ( 4). 

(2.8) 

Here E measures the departure of the coefficients a and c from constant, and the 
right-hand side f is obtained from (2.5). The corresponding truncation error rh = 
Fh - Thu. measured in the norm 

lIthI ={ ,F1 NF’ [Th(Xj, y*)]2h~hy}1’2~ 

j=O k=O 
(2.9) 

is presented in Table I (the numbers in parentheses indicate powers of 10). On the 
finest grid (32 x 32) the two discretizations give about the same accuracy when 
E = 0; this is reasonable since the solution u is infinitely differentiable and thus the 
coeffkients of the filtered modes (63 of the 1024 total modes, or about 6 % ) are 
negligible. However, for nonzero E, aliasing increases the importance of these modes 
and the midpoint discretization is significantly more accurate. We note that this 
increase in accuracy holds only in the region of exponential convergence; in cases 
where exponential convergence is not obtained it is questionable whether to use 
spectral methods at all. Further comparison of the two discretizations will be made 
below in the context of spectral multigrid methods. 
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TABLE I 

Truncation Error for the Isotropic Test Case 

Grid size 
WxxN,) Discretization E = 0.0 

Truncation error 11~~11 

&=o.l s=0.2 &=0.3 

4x4 

8x8 

16 x 16 

32x32 

midpoint 
filtered 

midpoint 
filtered 

midpoint 
filtered 

midpoint 
filtered 

2.5(+1) 
0.0 

6.1 (0) 
5.8 (0) 

2.6 (-2) 
2.6 (-2) 

2.2 (-9) 
2.2 (-9) 

2.9(+1) 
3.9 (0) 

6.9 (0) 
6.5 (0) 

3.0 (-2) 
5.9 (-2) 

4.9 (-9) 
6.3 (-8) 

3.3 ( + 1) 
7.8 (0) 

7.7 (0) 
7.8 (0) 

3.6 (-2) 
1.1 (-1) 

8.8 (-9) 
1.2 (-7) 

3.7 (+l) 
1.2 ( + 1) 

8.6 (0) 
9.5 (0) 

4.2 (-2) 
1.6(-l) 

1.3 (-8) 
1.9 (-7) 

3. RELAXATION SCHEMFS FOR SPECTRAL MULTIGRID METHODS 

Having formulated the discrete equation (2.7) we now consider multigrid 
methods for its solution. Central to these methods is the relaxation scheme used to 
smooth the error on each grid. In [4] the Richardson (or Euler) scheme 

Uh = Uh - (j)rh (3.1) 

was used. Here uh and Uh are approximations to the true (discrete) solution Uh on 
the grid fib before and after the relaxation, respectively, rh = Fh- Ziphuh is the 
residual, and w is a relaxation parameter. If w is the same for all sweeps on a given 
grid the scheme is called stationary; if w is allowed to vary from one sweep to the 
next the scheme is called nonstationary. Since the major part of the work involved 
in (3.1) is in evaluating the residual rh, we consider below two alternatives to (3.1) 
which utilize the residual more effectively. 

3.1. Isotropic Problems 

The problem (2.5) is called isotropic on the grid 8, if 

a c -=- 
h; h;’ (3.2) 

which will be assumed throughout this section. For such problems the residual can 
be used more effectively by updating the value of uh at a point using not only the 
value of rh at that point, as in (3.1), but also values of rh at neighboring points [6]. 
This is the idea of the weighted residual relaxation scheme 
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fib = Uh - (jJ rh. (3.3) 

Here 01, fi, and y are weights to be used at surrounding points, with (3.3) interpreted 
as 

iijk = u$ - co Car$ + a((- l,k + rT+ l,k + rik _ 1 + r$ + 1) 

+ Y(r,h-1,k-~+rih+~,~+~+r~--,~+,+r/h+,,~--1)1, (3.4) 

where j and k specify the collocation points (xi, yk) with appropriate periodicity. 

3.1.1. Smoothing Analysis 

To analyze the smoothing properties of (3.3) we use local mode analysis [7]. 
When the coefficients a and c are constant the discrete Fourier modes 

Ee(Xj, y,)=eXp [i(++$$)] (3.5) 

are the eigenfunctions of 9” with corresponding eigenvalues 

&= -(+f+$$) (3.6) 

Here 8 = (e,, 0,) = 27r(p/N,, q/N,) is the discrete wavenumber with p and q integers 
such that IpI 6 NJ2 and 141 < N,/2. Then if the error uh - Uh before the relaxation 
(3.3) has a component AOEO, the error iih - Uh after relaxation will have the com- 
ponent &EB with 

&=As{l +wl,[a+2~( cose,+cose,)+4ycos8,cos8,]}. (3.7) 

Choosing the relaxation parameter w as 

o-hi-h: 
a c (3-V 

in (3.7) results in the convergence factor 

~(e)=~=i-(e:+e:)c~r+28( cos 8, + cos e,) + 4y cos 8, cos e,]. (3.9) 
0 

Now the modes representable on the grid a,, have 161 = max( le,], ]0,,] ) < x; of 
these, the modes not representable on the coarser grid Q,,, (0 < p < 1) are the high 
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wavenumbers 101 > prc. Including 101 = px as high wavenumbers for convenience we 
define the multigrid smoothing factor as 

(3.10) 

i.e., the factor by which all high wavenumber errors are reduced by one relaxation 
sweep. We seek to choose the residual weights c(, j, and y so as to minimize p. 

When only the single parameter c( is considered (i.e., j = y = 0) the weighted 
residual scheme (3.3) reduces to the Richardson scheme (3.1), except for the 
definition of w. In this case the optimal CI and corresponding ,M can be obtained 
analytically as 

2 2-g 
@=(2+P2)n29 fi=2fp2. (3.11) 

For the standard mesh ratio p = 4, (3.11) gives p = 8 as obtained for small h in [4], 
where the maximum in (3.10) did not include the filtered modes 101 = rc. When more 
than one parameter is considered the minimization problem for ,Ci must be solved 
numerically. Table II shows the optimal choices for two parameters (a, fl) and three 
parameters (CI, /I, y), along with the corresponding smoothing factors, for the mesh 
ratio p = 4. These results were obtained using the differential-correction algorithm 
[8], and show that the weighted residual scheme improves the smoothing factor 
dramatically. Further testing shows that three parameters are probably best, as 
including more parameters (i.e., utilizing the residual at even more surrounding 
points) leads to only minimal reductions in the smoothing factor. 

3.1.2. Implementation 

The weighted residual relaxation scheme was tested in a simple multigrid 
procedure based on the one described in [4, 51. Since the details of the method 
were given in those papers, only a brief description will be included here. 

TABLE II 

Optimal Parameters and Smoothing Factors 
for the Weighted Residual Relaxation Scheme 

Number of Parameters 
parameters considered 

Optimal Corresponding 
values P 

1 a 0.9006(-l) 0.7778 

2 0.1491 
0.3024 ( - 1) 

0.4718 

0.2240 
3 0.7000 ( - 1) 0.1058 

Y 0.2800-l) 
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Four grids were used, with 4, 8, 16, and 32 points in each direction. For sim- 
plicity a ‘simple V-cycle control structure was used, with fixed numbers N, and N, 
of relaxations on each grid in the downward (tine to coarse) and upward (coarse to 
fine) branches, respectively. The results reported here are for N,, = 2 and N, = 1, 
which were optimal for the weighted residual scheme; Nd = 3 and N, = 0 were used 
with nonstationary Richardson relaxation (3 parameters). Initial approximations 
on all grids were zero. 

The grid transfers employed were based on Fourier interpolation; they consist of 
transforming the grid function, setting the higher Fourier coefficients to zero or 
appending additional zero coefficients as appropriate, and transforming back to the 
new grid. These transfers are described in detail in [4, 51. Two points deserve men- 
tion here. First, the grid transfers (like the residual calculation) can be carried out 
one direction (x or y) at a time, so that only one-dimensional transforms are 
needed. Second, when using the midpoint discretization, care must be taken with 
the last Fourier coefficient (see the Appendix). As implied by (A5), the last coef- 
ficient on a coarse grid must be divided by 2 when transferring to a liner grid; con- 
versely, when transferring from a fine grid to a coarse grid the last coefficient for the 
coarse grid must be multiplied by 2. Note that with the filtered discretization this 
consideration does not arise, but the highest Fourier mode in each direction then 
must be filtered from the residual each time it is computed. 

The analysis in the previous section is rigorous when the coefficients a and c are 
constant. Numerical experiments show that when a and c are not constant (but still 
equal) and the relaxation scheme (3.1) or (3.3) is not changed, the convergence rate 
degrades significantly; in fact, the method often diverges. A partial fix suggested in 
[S] is underrelaxation, i.e., decreasing the value of w by 25-50%. In this manner 
convergence may be obtained, but the rate is still significantly degraded. A more 
effective choice is to evaluate o pointwise by (3.8) as suggested by the local mode 
analysis. This pointwise “scaling” by the coefficient a (or c) is used in all results 
reported here; with it there is practically no degradation of convergence rates for 
nonconstant a and c. For the weighted residual method one can choose to scale 
either the relaxation parameter o or the residual rh; we refer to the resulting 
schemes as the scaled weighted residual and weighted scaled residual relaxation 
schemes, respectively. Note that for the midpoint discretization the coefficient a is 
stored at the midpoints in x; simple linear interpolation to get corresponding values 
at the collocation points for scaling works well. 

3.1.3. Numerical Results 

The spectral multigrid method was tested by starting with an initial 
approximation of zero and making V-cycles repeatedly until the norm of the 
residual after a cycle was less than the norm of the truncation error, The con- 
vergence rate can be measured by the convergence factor per V-cycle 
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where the subscripts “0” and “n” denote values before the first and after the last 
V-cycle, respectively, and n is the total number of cycles executed. This convergence 
factor can be related to the work done in several ways. 

The standard multigrid work unit is the amount of work involved in one 
relaxation sweep on the finest grid. Counting work in the usual way gives W= 
(1 + b+ &+ A) x (Nd + N,) G 3.984 work units per V-cycle. Admittedly this 
measure does not take into account the work of residual transfers and inter- 
polation, nor the fact that for the spectral method the work increases as 
N,N,log(N,N,). However, the convergence factor per work unit pw = (p,,)“@’ 
should be close to the smoothing factor ji (helpful in checking the code) and 
provides an estimate of the efficiency which is independent of both the computer 
and the programmer. Table III shows the convergence factor ,uw obtained for the 
isotropic test case (2.8) using the weighted residual and Richardson relaxation 
schemes for both the midpoint and filtered discretizations. The Richardson schemes 
were implemented as described in [4]. For the filtered discretization one could in 
principle reduce the smoothing factor ~1 slightly by excluding the filtered modes 
/I!?[ = 7~ from the maximum in (3.10); in practice this is rather awkward, as the 
parameters ~1, /?, and y then depend on h, and was done only for the stationary 
Richardson scheme. Recalling that E measures the departure of the coefficients a 
and c from constant we see that the scaling introduced above works well, with the 
weighted scaled residual scheme producing the best results. 

To obtain a more direct measure of efficiency it is convenient to define a time 
unit as the actual execution time required to evaluate the midpoint residual on the 
finest grid. The convergence factor per time unit pT = (pv)‘IT, where T is the num- 
ber of time units per V-cycle, then includes the work of grid transfers and other 
overhead (excluding setup work) but depends on both the computer and the skill of 

TABLE III 

Smoothing Factor ji and Convergence Factor 
per Work Unit pw for the Isotropic Test Case 

Convergence per work unit pw 

Relaxation scheme Discretization Ii & = 0.0 .s=O.l E = 0.2 E = 0.3 

Weighted scaled residual midpoint 0.1058 0.1040 0.1184 0.1196 0.1116 
filtered 0.1135 0.1486 0.1794 0.2020 

Scaled weighted residual midpoint 0.1058 
0.1040 0.1277 0.1462 0.1583 

filtered 0.1135 0.1641 0.2071 0.2453 

Nonstationary Richardson 

Stationary Richardson 

midpoint filtered 

midpoint 
filtered 

0.5994 
0.5972 0.6143 0.6272 0.6372 
0.6118 0.6209 0.6330 0.6430 

0.7778 0.7654 0.7752 0.7820 0.7874 
0.7510 0.7384 0.7294 0.7264 0.7268 
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the programmer. The results presented here were obtained on a CRAY-1 computer 
using assembly language FFTs and vectorized code where possible; making the grid 
functions explicitly periodic by including two extra grid points in each direction 
made the code considerably simpler and easier to vectorize. The time unit obtained 
was 3.149 msec, with (midpoint) Richardson and weighted residual relaxations tak- 
ing about 1.15 and 1.21 time units, respectively, per sweep on the finest grid. 
Table IV shows the convergence factor pcLT, along with the number n of I’-cycles 
required to reach truncation error, for the same cases as considered in Table III. 
With the filtered discretization the residual must be filtered each time it is com- 
puted, increasing by about 17% the time required per relaxation sweep on the 
finest grid and leading to larger values of c(= than with the midpoint discretization. 
Since the execution time is proportional to log(pL,) these results show that the 
weighted residual schemes are about 4 and 8 times faster than the nonstationary 
and stationary Richardson schemes, respectively, in the context of this spectral mul- 
tigrid method. 

Two modifications of the spectral multigrid method described above were 
investigated, both of which are related to the idea of compatible coarsening [7]. 
The first concerns the construction of the coarse grid operators. For the results 
presented above the coefficients a and c were evaluated on the finest grid and 
transferred to the coarser grids by Fourier interpolation (taking into account the 
location of the midpoints), resulting in what Zang et al. [S] refer to as the “filtered” 
coarse grid operators. Alternatively, one can simply evaluate a and c on the coarser 
grids directly, thereby obtaining the “unfiltered” coarse grid operators. The second 
modification involves replacing the Fourier transfer of residuals by injection, i.e., 
evaluating the residual on the line grid and transferring it to the coarse grid by 

TABLE IV 

Convergence Factor per Time Unit pc, and Number of V-Cycles n 
Required to Reach Truncation Error for the Isotropic Test Case 

Convergence per time unit 
y&umber of V-cycles n 

Relaxation scheme 

Weighted scaled residual 

Scaled weighted residual 

Nonstationary Richardson 

Stationary Richardson 

Discretization & = 0.0 &=o.l s=0.2 &=0.3 

midpoint 0.4313 O&/3 0.4613 0.4613 
filtered 0.50/3 0.5413 0.58/3 0.6013 

midpoint 0.4313 0.4613 0.4913 0.50/3 
filtered 0.4913 0.5613 0.60/3 0.6314 

midpoint 0.82/l 1 0.83/l 1 0.84/l 1 0.84/l 1 
filtered 0.85112 0.85/l 1 0.86/l 1 0.87/l 1 

midpoint 0.90/20 0.91121 0.91121 0.91/21 
filtered 0.9012 1 0.90/18 0.90/17 0.90/17 
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TABLE V 

Comparison of Residual Transfers and Coarse Grid Operators 

Residual 
transfers 

Fourier 

Injection 

Coarse grid 
operators 

filtered 

unfiltered 

filtered 

unfiltered 

Discretization 

midpoint 
filtered 

midpoint 
filtered 

midpoint 
filtered 

midpoint 
filtered 

Convergence per work unit pw 

B = 0.0 .?=O.l c = 0.2 E = 0.3 

0.1040 0.1184 0.1196 0.1116 
0.1135 0.1486 0.1794 0.2020 

0.1040 0.1132 0.1193 0.1138 
0.1135 0.1535 0.1856 0.2085 

0.1184 0.1525 0.1649 0.1774 
0.1180 0.1640 0.1884 0.2020 

0.1184 0.1520 0.1597 0.1762 
0.1180 0.1638 0.1883 0.2028 

simply using the values at points common to both grids. Table V shows the con- 
vergence factors pw obtained with these two modifications using the weighted 
scaled residual relaxation scheme for the isotropic test case (2.8). The changes in 
convergence factors are fairly small, as are the changes in overall execution time 
(not shown). Fourier residual transfers give slightly better results than injection, 
with little difference between the filtered and unfiltered coarse grid operators. 

3.2. Anisotropic Problems 

When (3.2) does not hold, the problem (2.5) is said to be anisotropic on the grid 
Q,. The weighted residual scheme can be extended to this case, but the optimal 
weights CI, /I, and y then depend on a and c. These weights could be determined for 
any given problem, but the smoothing factors obtained can be quite large. In 
general, this approach is tiresome at best. 

A more robust relaxation scheme based on defect corrections can be described as 
follows. Each relaxation sweep consists of computing the residual rh = Fh - dphuh, 
solving 

9; vh = rh (3.13) 

for the approximate correction Vh, and updating the approximation uh via 

iih=Uh+WVh. (3.14) 

Here o is a relaxation parameter and Tip:, is an approximation to Yh, which we will 
take as the five-point second-order finite-difference operator 
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(9; vhljk = %+ l/d v?+ l,k - vjk) - aj- l,*,ktV;k - VJ- l,k) h2 
x 

+ Cj,k+1/2(V~k+l- v;k) - cj,k- l/2( Vik - V;k- 1) (3.15) 

3.2.1. Smoothing Analysis 

For the defect correction method described above, local mode analysis gives the 
convergence factor 

#U(e) 
ah2f12 + ch* t12 

= 1 - 0 
2ah;( 1 - cos 0; + 2~;;; I- cos e,) 1 ’ 

(3.16) 

assuming a and c are constant. The inequalities 2(1- cos 4) < d2 < (7r2/4) x 
2( 1 - cos 4) for 141~ n lead to the lower and upper bounds 1 and n2/4 for the quan- 
tity in brackets in (3.16) on the region 0 < 101 < n. Thus the maximum of Ip( on 
this region is minimized by choosing 

8 
co=-, 

7c2+4 

which yields the corresponding smoothing factor 

X2-4 p= - G 0.4232. 
lr2+4 

This smoothing factor could be reduced somewhat by choosing o to minimize 
lp(0)j over px 6 101 < rc as in (3.10), or by weighting the residuals at surrounding 
points as before. However, in either case the optimal parameters then depend on a 
and c and the resulting improvement in ji is small (especially for u/c much different 
than one). Therefore the choice (3.17) seems the most useful in practice. 

3.2.2. Implementation 

When using (3.13 k( 3.14) as a relaxation scheme within a spectral multigrid 
method, (3.13) must only be solved for the high wavenumbers, and only 
approximately at that. Thus one can “solve” (3.13) by simply making a small num- 
ber of sweeps of an appropriate relaxation method, obtaining an approximation 
uh% Vh from an initial approximation of zero; this amounts to a preconditioning 
very similar to that used for Chebyshev spectral methods by Zang et al. [4,5]. For 
the results presented here we chose alternating direction line relaxation to accom- 
modate general a and c [6]. This consists of first relaxing along lines of constant y 
by solving 
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aj- 112.k + aj+ u2,k cj,k ~ l/2 + cj,k + l/2 

h: 

+ 

(3.19) 

for fib, and then doing an analogous sweep along lines of constant x. Vectorization 
was achieved by solving first for the odd (“white”) lines and then for the even 
(“black”) lines, resulting in alternating direction zebra (ADZ) relaxation. The linear 
systems involved are symmetric and tridiagonal (with periodicity), and were solved 
in parallel using a modified Cholesky decomposition of the form A = LDLT, where 
D is diagonal and L is lower triangular with ones along the main diagonal. By com- 
puting the factorizations once and storing them the execution time per ADZ sweep 
(about 0.95 time unit on the finest grid) could be cut in half; for simplicity this was 
not done here. Since the midpoint discretization is quite natural for this scheme, the 
filtered discretization was not tested. 

3.2.3. Numerical Results 

The defect correction relaxation scheme described above was tested in the spec- 
tral multigrid method for the anisotropic test case 

a(x, y) = 1 + q cos x, c(x,y)=lfI]cosy, 

( “) . ( 
u(x, y)=sin 7rc0sx+~ sin 7cc0sy+~ 

(3.20) 

Here r] measures the amount of anisotropicity, with (a/c),,, = (c/a),,, = (1 + q)/ 
(1 - q). The convergence factor per work unit pw obtained is shown in Table VI and 
compared with that obtained using the other relaxation schemes. For these results 

TABLE VI 

Smoothing Factor ,ri and Convergence Factor 
per Work Unit pw for the Anisotropic Test Case 

Convergence per work unit pw 

Relaxation scheme ii ?/ = 0.0 9=0.2 ?J=o.4 r~ = 0.6 fj=O.8 

Multigrid 
Defect correction 
Scaled weighted residual 
Nonstationary Richardson 
Stationary Richardson 

Single grid (32 x 32) 
Defect correction 

0.4232 0.4553 0.4570 0.4609 0.4683 0.4843 
0.1058 0.1040 0.3943 1.110 2.872 11.67 
0.5994 0.5972 0.5944 1.138 1.924 3.802 
0.7778 0.7654 0.7643 1.030 1.680 3.252 

0.4232 0.9611 0.9584 0.9550 0.9512 0.9480 
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only one ADZ sweep was used in solving (3.13), resulting in 2.15 time units per 
defect correction sweep on the finest grid. By using more ADZ sweeps the values of 
pw can be reduced approximately 5%, but this improvement is not worth the com- 
putational cost. The defect correction method achieved a convergence factor per 
time unit pr of about 0.83, with truncation error reached in 9 V-cycles. Further 
testing shows that the convergence rates reported here may deteriorate somewhat 
for very large anisotropicity [(u/c),,, Z 0( 102)]. 

The analysis in Section 3.2.1 indicates that when the coefficients a and c are con- 
stant and (3.13) is solved to sufficient accuracy, (3.18) is in fact the maximum con- 
vergence factor Ip( for all modes .fI. This suggests that the defect correction 
scheme may be useful as a solution method on a single fine grid. Indeed, if (3.13) is 
solved exactly, then this is the “spectral iteration” method of Orszag [2] and 
McCrory and Orszag [9]. However, the approximate solution of (3.13) by one 
ADZ sweep as above is not adequate on a single line grid; the resulting convergence 
factors shown in the last line of Table VI are fairly large, and only slight 
improvement is obtained by using more ADZ sweeps. The problem here is that 
ADZ sweeps give an accurate solution only for the high wavenumbers. This 
suggests that an efficient way to solve (3.13) approximately would be to make a 
single cycle of a standard (finite-difference) multigrid method. In this way multigrid 
techniques could be used “interior” to the defect correction method, rather than 
“exterior” to it as described above. The relative effectiveness of these two 
approaches has not been examined. 

4. CONCLUSIONS 

We have examined the spectral multigrid method of [4, 51 and studied several 
modifications which significantly improve its accuracy and efficiency for periodic 
elliptic problems. We conclude that 

(1) the midpoint discretization described in Section 2 is more accurate than 
the standard filtered discretization, and is more efficient since it eliminates the need 
to filter the residual each time it is computed; 

(2) for isotropic problems the weighted residual relaxation scheme introduced 
in Section 3.1 yields a smoothing factor considerably better than that of the 
Richardson schemes with very little increase in computational work; 

(3) scaling the residual pointwise by the coefficients preserves the constant 
coefficient convergence factor even when the coefficients are not constant; 

(4) anisotropic problems can be solved efficiently by the spectral multigrid 
method using the defect correction relaxation scheme introduced in Section 3.2. 

The results presented here further substantiate the usefulness of spectral multigrid 
methods. 
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APPENDIX 

Truncated Fourier series are usually represented on a computer by discrete 
Fourier transforms (computed via the FFT algorithm). The distinction between the 
two is often inconsequential and hence overlooked, but in cases where it does mat- 
ter it can lead to some confusion. In this Appendix we consider this problem in 
detail. 

Let f(x) be a function of period L expressible as the truncated Fourier series 

NI2 
f(x)= 1 jbe2niPXIL, 

p= -N/2 

where the coefficients are given by 

(Al) 

(A21 

and N is even. To obtain suitable discrete forms of (Al) and (A2) one introduces 
the points xj = jh (j = O,..., N- 1) with h = L/N. Clearly the N valuesf(xj) (j = O,..., 
N- 1) do not suffice to completely represent f(x), as (Al) involves the N + 1 
degrees of freedom JPN,2, J-N,2 + 1 ,..., yN,2. Indeed, evaluating (A 1) at xj gives 

N/2- I 
&=f(xj) = c 3pe2niiP’N + (- l)-‘(f-N/2 +yNi2), (A3) 

p= -N/2+ 1 

showing that the lost information is precisely the difference J(N,2 -rPN12. Since this 
difference does not contribute to the values jj it is convenient to take it to be zero, 
i.e., 

3-N/2 =3N,2. (A4) 

Then defining new spectral coefficients fp by 

(A51 

(A3) reduces to 
W-2 

jj = C jpe2’QlN, (A61 
,D= -N/2+ I 

with the inverse given by 

J=o 

(A7) 

Equations (A6) and (A7) constitute the discrete Fourier transform pair. 
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The continuous form of the derivative is 

f’(x) = f! (??) ip3ppe2niPxIL. 
p= -N/2 

w3) 

To get an analogous discrete form one can evaluate (A8) at the points xi, obtaining 

f; =f’(xj)= y (;) ~7~~2’~ijplN, 

P= -N/2 
(A9) 

However, in view of (A4) the contributions for p = -N/2 and p = +N/2 cancel each 
other, so using (A5), (A9) yields the discrete form 

f,’ = Nt-’ (ZT) ipjbeWPlN 
p= -N/2+ 1 

(AlO) 

and the information in the highest modes (I pi = N/2) is simply lost. Note that if the 
discrete Fourier coefficientsfb of the derivative are obtained from the discrete coef- 
ficientsTp by the “natural” formula 

&=(:)ipTp (p= -:+I,...,3 (All) 

then the highest mode must be filtered (i.e., one must set f1N,2 =0) to avoid 
introducing a spurious contribution into (AlO). 

An alternative approach which retains the information in the highest modes is to 
evaluate the derivative at the midpoints xi+ 1,2 = (j+ 1/2)h (j= O,..., N - 1) between 
the points xi. From (A8) one obtains 

fJ+ 1,2 =f’(xj+ 1,2)= y ($) ipJbeniP~Ne2n@~N, 6412) 
p= -N/2 

which can be reduced using (AS) to the discrete form 

f;+ l/2 = 
p = -z2 + , (??) ipJbe~@lNe2WplN. (A13) 

With this approach the “natural” spectral differentiation formula (Al 1) is valid; the 
need for filtering has been eliminated at the cost of a slight increase in operation 
count [ (A13) involves a multiplication by a complex number, where (AlO) involves 
a multiplication by a pure imaginary number]. 

581/58/l-8 



112 BRANDT, FULTON, AND TAYLOR 

ACKNOWLEDGMENTS 

We wish to acknowledge helpful discussions with Professor Thomas Zang and our colleagues Wayne 
Schubert, Paul Ciesielski, and Mark DeMaria. We are also indebted to Odilia Panella for her help in 
preparing the manuscript. This work was supported by the Office of Naval Research under Contracts 
NOOO14-83-K-0068 and NOOO14-C-79-0793 and the National Science Foundation under Grant ATM-82- 
07563. Acknowledgment is also made of the National Center for Atmospheric Research, which is spon- 
sored by the National Science Foundation, for computer time used in this research. 

REFERENCES 

1. D. GOTTLIEB AND S. A. ORSZAG, “Numerical Analysis of Spectral Methods,” NSF-CBMS 
Monograph No. 26, Sot. Ind. and Appl. Math., Philadelphia, 1977. 

2. S. A. OMZAG, J. Comput. Phys. 37 (1980), 70. 
3. Y. S. WONG, T. A. ZANG, AND M. Y. HU.S~AINI, “Efficient Iterative Techniques for the Solution of 

Spectral Equations,” Symposium on Spectra1 Methods in Partial Differential Equations, ICASE, 
NASA Langley Research Center, Hampton, Va., August 1618, 1982. 

4. T. A. ZANG, Y. S. WONG, AND M. Y. HUSSAINI, .I. Compui. Phys. 48 (1982), 485. 
5. T. A. ZANG, Y. S. WONG, AND M. Y. HU~AINI, “Spectral Multigrid Methods for Elliptic Equations 

II,” J. Comput. Phys., in press. 
6. A. BRANDT, Math. Comput. 31 (1977) 333. 
7. A. BRANDT, in “Multigrid Methods” (W. Hackbusch and U. Trottenberg, Eds.), Springer-Verlag, 

New York, 1982. 
8. E. H. KAUFMAN, JR. AND G. D. TAYLOR, Internor. J. Numer. Methods Engrg. 9 (1975), 297. 
9. R. L. MCCRORY AND S. A. ORSZAG, .I. Comput. Phys. 37 (1980), 93. 


